Boosting and instability for regression trees

نویسندگان

  • Servane Gey
  • Jean-Michel Poggi
چکیده

The AdaBoost like algorithm for boosting CART regression trees is considered. The boosting predictors sequence is analyzed on various data sets and the behaviour of the algorithm is investigated. An instability index of a given estimation method with respect to some training sample is defined. Based on the bagging algorithm, this instability index is then extended to quantify the additional instability provided by the boosting process with respect to the bagging one. Finally, the ability of boosting to track outliers and to concentrate on hard observations is used to explore a nonstandard regression context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection by Boosting Regression Trees

A procedure for detecting outliers in regression problems is proposed. It is based on information provided by boosting regression trees. The key idea is to select the most frequently resampled observation along the boosting iterations and reiterate after removing it. The selection criterion is based on Tchebychev’s inequality applied to the maximum over the boosting iterations of ...

متن کامل

Stratified Gradient Boosting for Fast Training of CRFs

Boosting has recently been shown to be a promising approach for training conditional random fields (CRFs) as it allows to efficiently induce conjunctive (even relational) features. The potentials are represented as weighted sums of regression trees that are induced using gradient tree boosting. Its large scale application, however, suffers from two drawbacks: induced trees can spoil previous ma...

متن کامل

Boosting in Linear Discriminant Analysis

In recent years, together with bagging [5] and the random subspace method [15], boosting [6] became one of the most popular combining techniques that allows us to improve a weak classifier. Usually, boosting is applied to Decision Trees (DT’s). In this paper, we study boosting in Linear Discriminant Analysis (LDA). Simulation studies, carried out for one artificial data set and two real data se...

متن کامل

Face Alignment Using a Ranking Model based on Regression Trees

In this work, we exploit the regression trees-based ranking model, which has been successfully applied in the domain of web-search ranking, to build appearance models for face alignment. The model is an ensemble of regression trees which is learned with gradient boosting. The MCT (Modified Census Transform) as well as its unbinarized version PCT (Pseudo Census Transform) are used as features du...

متن کامل

Stratified Gradient Boosting for Fast Training of Conditional Random Fields

Boosting has recently been shown to be a promising approach for training conditional random fields (CRFs) as it allows to efficiently induce conjunctive (even relational) features. The potentials are represented as weighted sums of regression trees that are induced using gradient tree boosting. Its large scale application such as in relational domains, however, suffers from two drawbacks: induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2006